Monday, May 23, 2022
HomeNatureMaternal inheritance of glucose intolerance by way of oocyte TET3 insufficiency

Maternal inheritance of glucose intolerance by way of oocyte TET3 insufficiency


  • Worldwide Diabetes Federation. IDF Diabetes Atlas, tenth edn. Brussels, Belgium: Worldwide Diabetes Federation, 2021.

  • Pettitt, D. J., Baird, H. R., Aleck, Okay. A., Bennett, P. H. & Knowler, W. C. Extreme Weight problems in Offspring of Pima Indian Girls with Diabetes throughout Being pregnant. New Engl. J. Med. 308, 242–245 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hjort, L. et al. Diabetes in being pregnant and epigenetic mechanisms-how the primary 9 months from conception would possibly have an effect on the kid’s epigenome and later threat of illness. Lancet Diabetes Endocrinol 7, 796–806 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Gu, T. P. et al. The function of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Zimmet, P. Z., Magliano, D. J., Herman, W. H. & Shaw, J. E. Diabetes: a twenty first century problem. Lancet Diabetes & Endocrinology 2, 56–64 (2014).

    Article 

    Google Scholar
     

  • Clausen, T. D. et al. Excessive Prevalence of Kind 2 Diabetes and Pre-Diabetes in Grownup Offspring of Girls With Gestational Diabetes Mellitus or Kind 1 Diabetes The function of intrauterine hyperglycemia. Diabetes Care 31, 340–346 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Tam, W. H. et al. In Utero Publicity to Maternal Hyperglycemia Will increase Childhood Cardiometabolic Threat in Offspring. Diabetes Care 40, 679 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lowe, W. L. et al. Hyperglycemia and Adversarial Being pregnant Final result Comply with-up Research (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism. Diabetes Care 42, 372–380 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Watson, E. D. & Rakoczy, J. Fats eggs form offspring well being. Nat. Genet. 48, 478–479 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gross sales, V. M., Ferguson-Smith, A. C. & Patti, M. E. Epigenetic Mechanisms of Transmission of Metabolic Illness throughout Generations. Cell Metab 25, 559–571 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harris, J. E. et al. Train-induced 3′-sialyllactose in breast milk is a important mediator to enhance metabolic well being and cardiac perform in mouse offspring. Nature Metabolism 2, 678–687 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Godfrey, Okay. M., Gluckman, P. D. & Hanson, M. A. Developmental origins of metabolic illness: life course and intergenerational views. Tendencies Endocrinol. Metab. 21, 199–205 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Skinner, M. Okay., Manikkam, M. & Guerrero-Bosagna, C. Epigenetic transgenerational actions of environmental components in illness etiology. Tendencies Endocrinol. Metab. 21, 214–222 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rando, O. J. & Simmons, R. A. I’m consuming for 2: parental dietary results on offspring metabolism. Cell 161, 93–105 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boskovic, A. & Rando, O. J. in Annual Evaluate of Genetics, Vol 52 Vol. 52 Annual Evaluate of Genetics (ed N. M. Bonini) 21-41 (2018).

  • Ge, Z. J. et al. DNA methylation in oocytes and liver of feminine mice and their offspring: results of high-fat-diet-induced weight problems. Environ. Well being Perspect. 122, 159–164 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Huypens, P. et al. Epigenetic germline inheritance of diet-induced weight problems and insulin resistance. Nat. Genet. 48, 497–499 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Daxinger, L. & Whitelaw, E. Understanding transgenerational epigenetic inheritance by way of the gametes in mammals. Nat. Rev. Genet. 13, 153–162 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, Q., Yan, W. & Duan, E. Epigenetic inheritance of acquired traits by means of sperm RNAs and sperm RNA modifications. Nat. Rev. Genet. 17, 733–743 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mauvais-Jarvis, F. Estrogen and androgen receptors: regulators of gasoline homeostasis and rising targets for diabetes and weight problems. Tendencies Endocrinol. Metab. 22, 24–33 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muoio, D. M. & Newgard, C. B. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in kind 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kleinert, M. et al. Animal fashions of weight problems and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian improvement. Science 293, 1089–1093 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma, U. & Rando, O. J. Metabolic Inputs into the Epigenome. Cell Metabolism 25, 544–558 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cavalli, G. & Heard, E. Advances in epigenetics hyperlink genetics to the surroundings and illness. Nature 571, 489–499 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Wossidlo, M. et al. 5-Hydroxymethylcytosine within the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241 (2011).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iqbal, Okay., Jin, S.-G., Pfeifer, G. P. & Szabó, P. E. Reprogramming of the paternal genome upon fertilization entails genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. 108, 3642–3647 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Tan, L. & Shi, Y. G. Tet household proteins and 5-hydroxymethylcytosine in improvement and illness. Growth 139, 1895 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Q., Chi, M. M., Schedl, T. & Moley, Okay. H. An intercellular pathway for glucose transport into mouse oocytes. Am J Physiol Endocrinol Metab 302, E1511–E1518 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spruijt, C. G. & Vermeulen, M. DNA methylation: outdated canine, new methods? Nat. Struct. Mol. Biol. 21, 949–954 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boyes, J. & Fowl, A. DNA methylation inhibits transcription not directly by way of a methyl-CpG binding protein. Cell 64, 1123–1134 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Iynedjian, P. B. Molecular physiology of mammalian glucokinase. Cell. Mol. Life Sci. 66, 27–42 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Efrat, S. et al. Ribozyme-mediated attenuation of pancreatic β-cell glucokinase expression in transgenic mice leads to impaired glucose-induced insulin secretion. Proc Natl Acad Sci U S A 91, 2051–2055 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Grupe, A. et al. Transgenic knockouts reveal a important requirement for pancreatic β cell glucokinase in sustaining glucose homeostasis. Cell 83, 69–78 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Terauchi, Y. et al. Pancreatic β-cell-specific focused disruption of glucokinase gene. Diabetes mellitus as a result of faulty insulin secretion to glucose. J. Biol. Chem. 270, 30253–30256 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shen, J. & Zhu, B. Built-in evaluation of the gene expression profile and DNA methylation profile of overweight sufferers with kind 2 diabetes. Molecular medication experiences 17, 7636–7644 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joglekar, M. V. et al. Expression of miR-206 in human islets and its function in glucokinase regulation. American journal of physiology. Endocrinology and metabolism 315, E634–e637 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cauchi, S. et al. European genetic variants related to kind 2 diabetes in North African Arabs. Diabetes & metabolism 38, 316–323 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Bonnefond, A. et al. Pathogenic variants in actionable MODY genes are related to kind 2 diabetes. Nature Metabolism 2, 1126–1134 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Terauchi, Y. et al. Glucokinase and IRS-2 are required for compensatory β cell hyperplasia in response to high-fat diet-induced insulin resistance. J. Clin. Make investments. 117, 246–257 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu, B. et al. Impaired β-cell glucokinase as an underlying mechanism in diet-induced diabetes. Dis. Fashions Mech. 11, dmm033316 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tang, L. et al. Elevated CpG island methylation of GCK gene predicts the danger of kind 2 diabetes in Chinese language males. Gene 547, 329–333 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dhliwayo, N., Sarras, M. P. Jr, Luczkowski, E., Mason, S. M. & Intine, R. V. Parp inhibition prevents ten-eleven translocase enzyme activation and hyperglycemia-induced DNA demethylation. Diabetes 63, 3069–3076 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, D. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to most cancers. Nature 559, 637–641 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Zhang, Q. et al. Differential regulation of the ten-eleven translocation (TET) household of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT). J. Biol. Chem. 289, 5986–5996 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yuan, E.-F. et al. Hyperglycemia impacts international 5-methylcytosine and 5-hydroxymethylcytosine in blood genomic DNA by means of upregulation of SIRT6 and TETs. Scientific Epigenetics 11, 63 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pinzon-Cortes, J. A. et al. Impact of diabetes standing and hyperglycemia on international DNA methylation and hydroxymethylation. Endocr Join 6, 708–725 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deeds, M. C. et al. Single dose streptozotocin-induced diabetes: concerns for examine design in islet transplantation fashions. Lab. Anim. 45, 131–140 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Tesch, G. H. & Allen, T. J. Rodent fashions of streptozotocin-induced diabetic nephropathy (Strategies in Renal Analysis). Nephrol. 12, 261–266 (2007).

    Article 

    Google Scholar
     

  • Huan, L. et al. GDF11 Attenuates improvement of kind 2 diabetes by way of enchancment of islet β-cell perform and survival. Diabetes 66, 1914–1927 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bohacek, J. & Mansuy, I. M. A information to designing germline-dependent epigenetic inheritance experiments in mammals. Nat. Strategies 14, 243–249 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Behringer, R., Gertsenstein, M., Nagy, Okay. V. & Nagy, A. (eds) Manipulating the Mouse Embryo: A Laboratory Handbook (Chilly Spring Harbor Laboratory Press, 2003).

  • Ayala, J. E. et al. Commonplace working procedures for describing and performing metabolic assessments of glucose homeostasis in mice. Dis. Mannequin. Mech. 3, 525–534 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu, H. et al. Insulin remedy for gestational diabetes mellitus doesn’t absolutely defend offspring from diet-induced metabolic problems. Diabetes 68, 696–708 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Picelli, S. et al. Full-length RNA-seq from single cells utilizing Good-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harris, S. E., Gopichandran, N., Picton, H. M., Leese, H. J. & Orsi, N. M. Nutrient concentrations in murine follicular fluid and the feminine reproductive tract. Theriogenology 64, 992–1006 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gu, C., Liu, S., Wu, Q., Zhang, L. & Guo, F. Integrative single-cell evaluation of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes. Cell Res 29, 110–123 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Strategies 11, 817–820 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, W. et al. BS-Seeker2: a flexible aligning pipeline for bisulfite sequencing information. BMC Genomics 14, 774 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guo, W. et al. CGmapTools improves the precision of heterozygous SNV calls and helps allele-specific methylation detection and visualization in bisulfite-sequencing information. Bioinformatics 34, 381–387 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krueger, F. & Andrews, S. R. SNPsplit: Allele-specific splitting of alignments between genomes with identified SNP genotypes. F1000Res 5, 1479 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schutsky, E. Okay. et al. Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine utilizing a DNA deaminase. Nat Biotechnol (2018).

  • Guo, F. et al. Energetic and passive demethylation of female and male pronuclear DNA within the mammalian zygote. Cell Stem Cell 15, 447–459 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shen, L. et al. Tet3 and DNA replication mediate demethylation of each the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15, 459–471 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adenot, P. G., Mercier, Y., Renard, J. P. & Thompson, E. M. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional exercise in pronuclei of 1-cell mouse embryos. Growth (Cambridge, England) 124, 4615–4625 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Wang, H. et al. One-step technology of mice carrying mutations in a number of genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang, H. et al. One-step technology of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang, H., Wang, H. Y. & Jaenisch, R. Producing genetically modified mice utilizing CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9, 1956–1968 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dai, H. Q. et al. TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling. Nature 538, 528-+ (2016).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Coope, G. J. et al. Predictive blood glucose decreasing efficacy by Glucokinase activators in excessive fats fed feminine Zucker rats. Br. J. Pharmacol. 149, 328–335 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grimsby, J. et al. Allosteric activators of glucokinase: potential function in diabetes remedy. Science 301, 370–373 (2003).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Wang, P. et al. Results of a Novel Glucokinase Activator, HMS5552, on Glucose Metabolism in a Rat Mannequin of Kind 2 Diabetes Mellitus. J Diabetes Res 2017, 5812607 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorman, T. et al. Impact of high-fat food regimen on glucose homeostasis and gene expression in glucokinase knockout mice. Diabetes Obes Metab 10, 885–897 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johnson, D. et al. Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator. Diabetes 56, 1694–1702 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei, P. et al. Results of glucokinase activators GKA50 and LY2121260 on proliferation and apoptosis in pancreatic INS-1 β cells. Diabetologia 52, 2142–2150 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments